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XV. On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbance.
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§ 1. TuE object of the present investigation is to determine the relations which must
exist between the laws of the elasticity of any substance, whether gaseous, liquid, or
solid, and those of the wave-like propagation of a finite longitudinal disturbance in that
substance; in other words, of a disturbance consisting in displacements of particles along
the direction of propagation, the velocity of displacement of the particles being so great
that it is not to be neglected in comparison with the velocity of propagation. In par-
ticular, the investigation aims at ascertaining what conditions as to the transfer of heat
from particle to particle must be fulfilled in order that a finite longitudinal disturbance
may be propagated along a prismatic or cylindrical mass without loss of energy or change
of type: the word ¢ype being used to denote the relation between the extent of disturbance
at a given instant of a set of particles, and their respective undisturbed positions. The
disturbed matter in these inquiries may be conceived to be contained in a straight
tube of uniform cross-section and indefinite length.

§ 2. Mass-Velocity.—A convenient quantity in the present investigation:is what may
be termed the mass-velocity or somatic velocity—that is to say, the mass of matter through
which a disturbance is propagated in a unit of time while advancing along a prism of
the sectional area unity. That mass-velocity will be denoted by m.

Let S denote the dulkiness, or the space filled by unity of mass, of the substance in
the undisturbed state, and & the linear velocity of advance of the wave; then we have

evidently
a=mS. . . . « « « « .« < . . D
§ 8. Cinematical Condition of Permanency of Type.—If it be possible for a wave of
disturbance to be propagated in a uniform tube without change of type, that possibility
is expressed by the uniformity of the mass-velocity m for all parts of the wave.
Conceive a space in the suppesed tube, of an invariable length Az, to be contained
between a pair of transverse planes, and let those planes advance with the linear velocity
@ in the direction of propagation. Let the values of the bulkiness of the matter at the
foremost and aftermost planes respectively be denoted by s, and s,, and those of the
velocity of longitudinal disturbance by #, and u,. Then the linear velocities with which
the particles traverse the two planes respectively are as follows: for the foremost plane
u,—a, for the aftermost plane u,~—a. The uniformity of type of the disturbance involves
as a condition, that equal masses of matter traverse the two planes respectively in a given
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time, being each, in unity of time, expressed by the mass-velocity; hence we have, as
the cinematical condition of uniformity of type, the following equation:

TZTQ-:g:m(z)
Another way of expressing the same condition is as follows:

Au=—mdAs. . . . . . . . . . . .. (3

) 4. Dynamical Condition of Permanency of Type—Let p, and p, be the intensities

of the longitudinal pressure at the foremost and aftermost advancing planes respectively.
Then in each unit of time the difference of pressure, p,—p,, impresses on the mass m
the acceleration w,—u,, and consequently, by the second law of motion, we have the
following value for the difference of pressure:

Po—Pr=m(Uhy—U). . . . . . o . . . .. (4)
Then substituting for the acceleration #,—wu, its value in terms of the change of bulki-
ness as given by equation (3), we obtain, for the dynamical condition of permanency of
type, the following equation,
| Po—P =M (8, —=8), « + « « « « « « .« .« . (9)
which may also be put in the form of an expression giving the value of the square of
the mass-velocity, viz.

A d . :
m2=—-7£=—£(6)

The square of the linear velocity of advance is given by the following equation:
d
@=m*S'=—S’ BZ;- B ()

The integral form of the preceding equations may be expressed as follows. Let S, as
before, be the bulkiness in the undisturbed state, and P the longitudinal pressure ; then
in a wave of disturbance of permanent type, we must have the following condition ful-
filled : ’

pAmPs=P4+m*S. . . . . . . . 0 . .0 (8)

§ 5. Waves of Sudden Disturbance.—The condition expressed by the equations of the
preceding section holds for any type of disturbance, continuous or discontinuous, gradual
or abrupt. To represent, in particular, the case of a single abrupt disturbance, we must
conceive the foremost and aftermost advancing planes already mentioned to coalesce into
one. Then P is the longitudinal pressure, and S the bulkiness, in front of the advancing
plane; p is the lonigtudinal pressure, and s the bulkiness, behind the advancing plane;
and the advancing plane is a wave-front of sudden compression or of sudden rarefaction®

* (Note, added 1st August, 1870.) Sir Wirriam Tromson has pointed out to the author, that a wave of
sudden rarefaction, though.mathematica]ly possible, is an unstable condition of motion; any deviation from
absolute suddenness tending to make the disturbance become more and more gradual. Hence the only wave

of sudden disturbance whose permanency of type is physically possible, is one of sudden compression ; and this
is to be taken into account in connexion with all that is stated in the paper respecting such waves.
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according as p is greater or less than P. The squares of the mass-velocity and of the linear.
velocity of advance are respectively as follows:

s_p—P,
m=E" . (9)
e )

The velocity of the disturbed particles is as follows:

u=m(S—s)=L"L=/(p=P).5=s); . . . . . . (11

and it is forward or backward according as the wave is one of compression or of rarefaction.

The energy expended in unity of time, in producing any such wave, is expressed by puw;
for the wave may be conceived to be produced in a tube closed at one end by a moveable
piston of inappreciable mass, to which there is applied a pressure p different from the
undisturbed pressure P, and which consequently moves with the velocity w. The way

in which that energy is disposed of is as follows: actual energy of the disturbance,

m;‘ ; work done in altering bulkiness, "M—""Izi:‘?—) ; and the equation of the conserva-

tion of energy is

pu:%{uZ-i-(p-{—P)(S—-s)}. e e e e e s (118

§ 6. Thermodynamic Conditions.—While the equations of the two preceding sections
impose the constancy of the rate of variation of pressure with bulkiness during the dis-

turbance (%:—m”) as an indispensable condition of permanency of type of the wave,

they leave the limits of pressure and of bulkiness, being four quantities, connected by

Py—P__
§1—S,

therefore one more equation is required, and that is to be determined by the aid of the
laws of thermodynamics.
It is to be observed, in the first place, that no substance yet known fu]ﬁls the con-

. d i .
one equation only —2]; :m2>. Two only of those quantities can be arbitrary ;

dp
dition expressed by the equation d— = —m’= constant, between finite limits of disturb-

ance, at a constant temperature, nor in a state of non-conduction of heat (called the
adiabatic state). In order, then, that permanency of type may be: possible in a wave
of longitudinal disturbance, there must be both change of temperature and conduction
of heat during the disturbance.

The cylindrical or. prismatic tube in which the disturbance is supposed to take place
being ideal, is to be considered as non-conducting. Also, the foremost and aftermost
transverse advancing planes, or front and back of the wave, which contain between them
the particles whose pressure and bulkiness are in the act of varying, are to be considered
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as non-conducting, because of there being an indefinite length of matter before the fore-
most and behind the aftermost plane, to resist conduction.

The transfer of heat, therefore, takes place wholly amongst the particles undergoing
variation of pressure and bulkiness; and therefore for any given particle, during its
passage from the front to the back of the wave, the integral amount of heat received must
be nothing ; and this is the thermodynamic condition which gives the required equation.
That equation is expressed as follows:

(Prde=0; . . .. .1
Ja
in which # denotes absolute temperature, and ¢ the ¢ thermodynamic function.” The
value of that function, as explained in various papers and treatises on thermodynamics,
is given by the following formula:

dU
p=Jehyp logr+y(=)+o. - . . . . . . (124)

in which J is the dynamical value of a unit of heat; ¢, the real specific heat of the
substance; (), a function of the temperature alone, which is =0 for all temperatures
at which the substance is capable of approximating indefinitely to the perfectly gaseous
state, and is introduced into the formula solely to provide for the possible existence of
substances which at some temperatures are incapable of approximating to the perfectly
gaseous state; and U, the work which the elastic forces in unity of mass are capable
of doing at the constant temperature 7. The substitution for the integral in equation
(12) of its value in terms of p and s for any particular substance, gives a relation between
the limits of pressure p, and p,, and the limits of bulkiness s, and s,, which being com-
bined with equation (5), or with any one of the equivalent equations (6), (8), or (9), com-
pletes the expression of the laws of the propagation of waves of finite longitudinal dis-
turbance and permanent type in that particular substance.

§ 7. Assumption as to Transfer of Ileat.—In applying the principles of the preceding
section to the propagation of waves of longitudinal disturbance, it is obviously assumed
that the transfer of heat takes place between the various particles which are undergoing
disturbance at a given time, in such a manner as to ensure the fulfilment of the dyna-
mical condition of permanency of type. It appears highly probable, that how great
soever the resistance of the substance to the conduction of heat may be, that assumption
as to the transfer is realized when the disturbance is sudden, as described in § 5; for
then particles in all the successive stages of the change of pressure and bulkiness within
the limits of the disturbance are at inappreciable distances from each other; so that the
resistance to the transfer of heat between them is inappreciable.

But when the disturbance is not sudden, it is probable that the assumption as to the
transfer of heat is fulfilled in an approximate manner only; and if such is the case, it
follows that the only longitudinal disturbance which can be propagated with absolute per-
manence of type is a sudden disturbance.

§ 8. Combination of the Dynamic and Thermodynamic Equations.—In every fluid, and
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probably in many solids, the quantity of heat received during an indefinitely small
change of pressure dp and of bulkiness ds is capable of being expressed in either of the
following forms:

Tdg
T =0 dpd p+e Pds

in which ¢, and ¢, denote the specific heat at constant bulkiness and at constant pres-
sure respectively; and the differential coefficients Z—; and%,g of the absolute temperature

are taken, the former on the supposition that the bulkiness is constant, and the latter
on the supposition that the pressure is constant. Let it now be supposed that the
bulkiness varies with the pressure according to some definite law; and let the actual
rate of variation of the bulkiness with the pressure be denoted by ZS—P Then equation
(12) may be expressed in the following form :

P2 dr ds
j;. dp'{ + ?ds’ dp}
Now, according to the dynamic condition of permanence of type, we have by equa-

tion (6),
ds 1

="

which, being substituted in the preceding integrals, gives the following equations from
which to deduce the square of the mass-velocity :

P2 dr dr
i‘dp.{m’q ;—opis}=0.. N ¢ £)
It is sometimes convenient to substitute for ¢, ds * the following value, Whlch is a known
consequence of the laws of thermodynamics :

dr__  dr , zdp
Y ¢ 7Y

the differential coeﬁiment ; being taken on the supposition that s is constant. The

equations (13) and (13 A) are applicable to all fluids, and probably to many solids also,
especially those which are isotropic.

The determination of the squared mass-velocity, m? enables the bulkiness s for any
given pressure p, and the corresponding velocity of disturbance u, to be found by means
of the following formule, which are substantially identical with equations (8) and (3)
respectively:

P—
e T ¢ 1)

—-m(S—s)-—p—P.. N ¢ )

MDCCCLXX. ‘2p
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Equation (15) also serves to calculate the pressure p corresponding to a given velocity
of disturbance . It may here be repeated that the linear velocity of advance is a=mS
(equation 1).

0 9. Application to a Perfect Gas—In a perfect gas, the specific heat at constant
volume, ¢,, and the specific heat at constant pressure, c,, are both constant; and conse-

quently bear to each other a constant ratio, %’, whose value for air, oxygen, nitrogen,
8

and hydrogen is nearly 141, and for steam-gas nearly 1-3. Let this ratio be denoted
by 7. Also, the differential coefficients which appear in equations (13) and {134) have
the following values:—

ar v s s )

dp~ p Jep—e) T J(y—1)es’

d'r__'r p___ P .

ds— s J(cp—e) Jy—L)e,’ L (.16)

dp_p_J—ci) J('y—l)c,.

vt s s
When these substitutions are made in equation (13), and constant common factors can-
celled, it is reduced to the following:

fdp.{m%_yp}:o. N e 1)

But according to the dynamical condition of permanence of type, as expressed in equa-
tion (8), we have m’s=m’S+P—p; whence it follows that the value of the integral in
equation (17) is

£ "dp Am*S+P—(y+1)p} =(mS+ P)(p—p,) — LI (pi—p?)=0;

which, being divided by p,—p,, gives for the square of the mass-velocity of advance the
following value :

1
m2=-s—{(7+1).£2—:2m—P}. e 1)
The square of the linear velocity of advance is
a*:m’SziS{(7+1).1ﬁ-_-g—£‘—P}. e )

The velocity of disturbance  corresponding to a given pressure P, or, conversely, the
pressure p corresponding to a given velocity of disturbance, may be found by means of
equation (15). .

Such are the general equations of the propagation of waves of longitudinal disturbance
of permanent type along a cylindrical mass of a perfect gas whose undisturbed pressure
and bulkiness are respectively P and S. In the next two sections particular cases will
be treated of.

§ 10. Wave of Oscillation in o Perfect Gas.—Let the mean between the two extreme
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pressures be equal to the undisturbed pressure; that is, let

+

BER=P; ... oL (20)
then equations (18) and (19) become simply

M= L L. (o)
and

@=yPS; . . . . . . 0000 (22

the last of which is LApLacE’S well-known law of the propagation of sound. The three
equations of this section are applicable to an indefinitely long series of waves in which
equal disturbances of pressure take place alternately in opposite directions.

§ 11. Wawve of Permanent Compression or Dilatation in a Tube of Perfect Gas—To
adapt equation (18) to the case of a wave of permanent compression or dilatation in a
tube of perfect gas, the pressure at the front of the wave is to be made equal to the un-
disturbed pressure, and the pressure at the back of the wave to the final or permanently
altered pressure. Let the final pressure be denoted simply by p; then p,=P, and p,=p;
giving for the square of the mass-velocity

a1 P :

m‘_—_-s{(y+1)g+(7—l)'§}, T .X)
for the square of the linear velocity of advance

2 2Q2 p ' : P

= S=s{(7+1)-2-+(7—1)§}, e e (28

and for the final velocity of disturbance

u———-— —-P .
(r=P), /[ (7_1_1)17_'_(7_1)} )

Equations (28) and (24) show that a wave of condensation is propagated faster, and
a wave of rarefaction slower, than a series of waves of oscillation. They further show
that there is no upper limit to the velocity of propagation of a wave of condensation ;
and also that to the velocity of propagation of a wave of rarefaction there is a lower
limit, found by making p=0 in equations (23) and (24). The values of that lower
limit, for the squares of the mass-velocity and linear velocity respectively, are as
follows :—

m(p=0)=0—0E L (26)

e(p=0)=0=DE%; .. @

and the corresponding value of the velocity of disturbance, being its negative limit, is

u(p—O)——\/{ﬂ)S} @)

2pP2 .
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It is to be borne in mind that the last three equations represent a state of matters which
may be approximated to, but not absolutely realized.

Equation (25) gives the velocity with which a piston in a tube is to be moved inwards
or outwards as the case may be, in order to produce a change of pressure from P to p,
travelling along the tube from the piston towards the further end. Equation (25) may
be converted into a quadratic equation, for finding p in terms of #; in other words, for
finding what pressure must be applied to a piston in order to make it move at a given
speed along a tube filled with a perfect gas whose undisturbed pressure and bulkiness
are P and S. The quadratic equation is as follows: '

—_ 2
and its alternative roots are given by the following formula:
+1 yPu? (v + 1)%t
p=P5E e+ ) @

The sign + or — is to be used, according as the piston moves inwards so as to produce
condensation, or outwards so as to produce rarefaction. Suppose, now, that in a tube of
unit area, filled with a perfect gas whose undisturbed pressure and volume are P and S,
there is a piston dividing the space within that tube into two parts, and moving at the
uniform velocity «: condensation will be propagated from one side of the piston, and
rarefaction from the other; the pressures on the two sides of the piston will be
expressed by the two values of p in equation (29); and the force required in order to
keep the piston in motion will be the difference of these values; that is to say,

P (y+ D)% |
ap=m A/ E+G L L 80)
Two limiting cases of the last equation may be noted: first, if the velocity of the piston

2
is very small compared with the velocity of sound, that is if i—zlt, is very small, we have

Apnearly=2u.,\/<ZS—P); e e e e o o o . (304)

secondly, if the velocity of the piston is very great compared with the velocity of sound,
that is if g—}; is very small, we have

Apnearlyz('y_";;_)“g. c o+« « « « < .« . . (30B)

§ 12. Absolute Temperature.—The absolute temperature of a given particle of a given
substance, being a function of the pressure p and bulkiness s, can be calculated for a point
in a wave of disturbance for which p and s are given. In particular, the absolute tempe-
rature in a perfect gas is given by the following well-known thermodynamic formula :

r=—F o ... ..o (3))

- (Jep—¢s) 3o

and if, in that formula, there be substituted the value of s in terms of p, given by equa-
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tions (8) and (18) combined, we find, for the absolute temperature of a particle at which
the pressure is p, in a wave of permanent type, the following value:

p= 1S (y+V(pit+plp—2p*. C .. (32)
Je —e) " (y+1)(py +po) P—2P?’ )

in which the first factor is obviously the undisturbed value of the absolute tem-

J(ep—cs)
perature. For brevity’s sake, let this be denoted by T.
The following particular cases may be noted. In a wave of oscillation, as defined in
0 10, we have p,+p,=2P; and consequently
—_n2
7=T.<“f+_1;f,’g'i............(32,a)
In a wave of permanent condensation or rarefaction, as described in § 11, let p,=P,
p.=P; then the final temperature is
=T . Y+ VPp+(y—1)p*
(y+1)Pp+@—1)P

§ 18. Types of Disturbance capable of Permanence.—In order that a particular type
of disturbance may be capable of permanence during its propagation, a relation must
exist between the temperatures of the particles and their relative positions, such that
the conduction of heat between the particles may effect the transfers of heat required by
the thermodynamic conditions of permanence of type stated in § 6.

During the time occupied by a given phase of the disturbance in traversing a unit
of mass of the cylindrical body of area unity in which the wave is travelling, the quan-
tity of heat received by that mass, as determined by the thermodynamic conditions, is
expressed in dynamical units by

7dQ.

The time during which that transfer of heat takes place is the reciprocal %L of the mass-
. d- . . . 1

velocity of the wave. Let d—; be the rate at which temperature varies with longitudinal

distance, and % the conductivity of the substance, in dynamical units; then the same
quantity of heat, as determined by the laws of conduction, is expressed by

1 dr
ﬁ.d<k%).

The equality of these two expressions gives the following general differential equation
for the determination of the types of disturbance that are capable of permanence :

mrd.¢=d.<k%> N L |
The following are the results of two successive integrations of that differential equation :—
dz k
ﬁ—g_l_—m‘s-m(—?,.’.........(g?)A)
kdr
r=B+ Ktnfedg’ © 7 (33 B)
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in which A and B are arbitrary constants. The value of A depends on the magnitude
of the disturbance, and that of B upon the position of the point from which z is reckoned.
In applying these general equations to particular substances, the values of = and ¢ are to
be expressed in terms of the pressure p, by the aid of the formule of the preceding
section; when equation (33 B) will give the value of # in terms of p, and thus will show
the type of disturbance required. :

Our knowledge of the laws of the conduction of heat is not yet sufficient to enable
us to solve such problems as these for actual substances with certainty. As a hypo-
thetical example, however, of a simple kind, we may suppose the substance to be per-
fectly gaseous and of constant conductivity. The assumption of the perfectly gaseous
condition gives, according to the formule of the preceding sections,

PS  (v+D(p+plp—2°
(y=1Je;” (y+1)(pr+p) P—2P?

T=

and

+1 (pot
rdp= m:('fy 1){&—-1!3 _p}dp.

It is unnecessary to occupy space by giving the whole details of the calculation; and
it may be sufficient to state that the following are the results. Let

+
p— n Psz_g’
1’2“1’1__gl :
then )
dv_dz__ &k (y=1)(p1+po)—49 34
dp™dg™ (y+1)mJe," ¢—q* (34)
=k {o=1)(p+p) ftg i
‘”‘(«,+1)ch.{ r12) hyp log 22449 hyp log (1— )} .. (34)
In equation (34 4) it is obvious that & is reckoned from the point where ¢=0; that
Pﬂ Py,

is, where the pressure p=""7""; a mean between the greatest and least pressures. The

direction in which « is pos1t1ve may be either the same with or contrary to that of the
advance of the wave; the former case represents the type of a wave of rarefaction, the

latter that of a wave of compression. For the two limiting pressures when g=+-¢,, g-‘;

becomes infinite, and # becomes positively or negatively infinite; so that the wave is
infinitely long. The only exception to this is the limiting case, when the conductivity

is indefinitely small; and then we have the following results: when p=p,, or p=p,, j;;

is infinite, and # is indefinite; and for all values of p between p, and p,, %: and & are

each indefinitely small. These conditions evidently represent the case of a wave of
abrupt rarefaction or compression, already referred to in §§ 6 and 7.
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Note as to previous investigations.—Four previous investigations on the subject of the
transmission of waves of finite longitudinal disturbance may be referred to, in order to
show in what respects the present investigation was anticipated by them, and in what
respects its results are new.

The first is that of Poissox, in the Journal de I'Ecole Polytechnique, vol. vii. Cahier 14,
p- 319. The author arrives at the following general equations for a gas fulfilling

MARIOTTE’S law :—
dp__ dp
A {“f—“t— W}’

dp de 1 dg*
E""‘a%_l"é-’d;'_ ’

in which ¢ is the velocity-function ; %ga the velocity of disturbance, at the time #, of a

particle whose distance from the origin is #; @ is the limit to which the velocity of
dpy
dey’
P, being the undisturbed pressure and g, the undisturbed density; and f denotes an
arbitrary function. This equation obviously indicates the quicker propagation of the
parts of the wave where the disturbance is forward (that is, the compressed parts) and
the slower propagation of the parts where the disturbance is backward (that is, the
dilated parts).

The second is that of Mr. StokEs, in the Philosophical Magazine for November 1848,
3rd series, vol. xxxiii. p. 849, in which that author shows how the type of a series of
waves of finite longitudinal disturbance in a perfect gas alters as it advances, and tends
ultimately to become a series of sudden compressions followed by gradual dilatations.

The third is that of Mr. A1ry, Astronomer Royal, in the Philosophical Magazine for
June 1849, 3rd series, vol. xxxiv. p. 401, in which is pointed out the analogy between
the above-mentioned change of type in waves of sound, and that which takes place in
sea-waves when they roll into shallow water.

The fourth, and most complete, is that of the Rev. SAMUEL EARNSHAW, received by the
Royal Society in November 1858, read in January 1859, and published in the Philoso-
phical Transactions for 1860, page 133. That author obtains exact equations for the
propagation of waves of finite longitudinal disturbance in a medium in which the pressure
is any function of the density; he shows what changes of type, of the kind already men-
tioned, must go on in such waves; and he points out, finally, that in order that the type

may be permanent g % (= —%s]-’ in the notation of the present paper) must be a constant

. . d . . .
propagation of the wave approximates when £ becomes indefinitely small, viz.
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quantity ; being the proposition which is demonstrated in an elementary way near the
beginning of the present paper. Mr. EArNsHAW regards that condition as one which
cannot be realized.

The new results, then, obtained in the present paper may be considered to be the fol-
lowing :—the conditions as to transformation and transfer of heat which must be fulfilled,
in order that permanence of type may be realized, exactly or approximately; the types
of wave which enable such conditions to be fulfilled, with a given law of the conduction
of heat; and the velocity of advance of such waves.

The method of investigation in the present paper, by the aid of mass-velocity to express
the speed of advance of a wave, is new, so far as I know; and it seems to me to have
great advantages in point of simplicity, enabling results to be demonstrated in a very
elementary manner, which otherwise would have required comparatively long and elabo-
rate processes of investigation.



